Bending the Obesity Cost Curve in Alabama:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $3 Billion in 10 Years and $9 Billion in 20 Years

The number of obese adults has grown dramatically in Alabama over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Alabama could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Alabama could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.¹

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Alabama, 2010-2030

*In millions of dollars
Obesity-Related Health Care Costs in Alabama

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,381,000,000</td>
<td>$9,481,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>448,912</td>
<td>72,185</td>
<td>$1,152,000,000</td>
<td>141,297</td>
<td>$3,672,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>79,581</td>
<td>4,947</td>
<td>$95,000,000</td>
<td>9,846</td>
<td>$213,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>311,842</td>
<td>59,122</td>
<td>$1,627,000,000</td>
<td>121,749</td>
<td>$4,235,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,006,222</td>
<td>60,370</td>
<td>$214,000,000</td>
<td>102,683</td>
<td>$570,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>988,452</td>
<td>31,890</td>
<td>$295,000,000</td>
<td>59,554</td>
<td>$791,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Alabama

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7%</td>
<td>32.0%</td>
<td>62.6%</td>
<td>55.1%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:³

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.⁴

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.⁵
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Alaska:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $550 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in Alaska over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Alaska could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Alaska could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

*In millions of dollars

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Alaska, 2010-2030

![Graph showing projected obesity-related health spending in Alaska from 2010 to 2030. The graph compares total predicted costs with and without a 5% BMI reduction.]
Obesity-Related Health Care Costs in Alaska

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$573,000,000.00</td>
<td>$1,530,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50,843</td>
<td>7,892</td>
<td>$176,000,000</td>
<td>14,389</td>
<td>$546,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>7,892</td>
<td>434</td>
<td>$26,000,000</td>
<td>809</td>
<td>$51,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>29,747</td>
<td>6,273</td>
<td>$281,000,000</td>
<td>11,889</td>
<td>$692,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>113,936</td>
<td>6,562</td>
<td>$36,000,000</td>
<td>10,826</td>
<td>$94,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>117,391</td>
<td>3,845</td>
<td>$55,000,000</td>
<td>6,895</td>
<td>$151,000,000</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Adult Obesity Rates in Alaska

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7%</td>
<td>27.4%</td>
<td>45.6%</td>
<td>39.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in The Lancet in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 F as in Fat report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the Community Guide for Preventive Services, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Arizona:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $4 Billion in 10 Years and $13 Billion in 20 Years

The number of obese adults has grown dramatically in Arizona over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Arizona could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Arizona could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Arizona, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Arizona

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,775,000,000</td>
<td>$13,642,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>496,106</td>
<td>79,411</td>
<td>$1,739,000,000</td>
<td>154,737</td>
<td>$5,781,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>87,125</td>
<td>6,223</td>
<td>$123,000,000</td>
<td>9,983</td>
<td>$249,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>348,694</td>
<td>58,537</td>
<td>$2,148,000,000</td>
<td>114,546</td>
<td>$5,467,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,176,899</td>
<td>67,742</td>
<td>$327,000,000</td>
<td>112,018</td>
<td>$876,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,179,621</td>
<td>37,145</td>
<td>$436,000,000</td>
<td>68,326</td>
<td>$1,269,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Arizona

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6%</td>
<td>24.7%</td>
<td>58.8%</td>
<td>51.8%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Arkansas:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $6 Billion in 20 Years

The number of obese adults has grown dramatically in Arkansas over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Arkansas could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Arkansas could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

$$\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703$$

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Arkansas, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Arkansas

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,157,000,000</td>
<td>$6,054,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>265,417</td>
<td>41,337</td>
<td>$722,000,000</td>
<td>80,530</td>
<td>$2,324,000,000</td>
<td></td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>47,390</td>
<td>2,732</td>
<td>$76,000,000</td>
<td>5,347</td>
<td>$145,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>187,061</td>
<td>32,935</td>
<td>$1,027,000,000</td>
<td>67,867</td>
<td>$2,642,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>606,605</td>
<td>34,933</td>
<td>$148,000,000</td>
<td>60,434</td>
<td>$391,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>598,760</td>
<td>19,067</td>
<td>$193,000,000</td>
<td>36,343</td>
<td>$561,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Arkansas

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.0%</td>
<td>30.9%</td>
<td>60.6%</td>
<td>53.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in California:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $28 Billion in 10 Years and $81 Billion in 20 Years

The number of obese adults has grown dramatically in California over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, California could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if California could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in California, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in California

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$28,886,000,000</td>
<td>$81,702,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>2,694,595</td>
<td>420,642</td>
<td>$9,747,000,000</td>
<td>796,430</td>
<td>$31,087,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>505,825</td>
<td>29,023</td>
<td>$689,000,000</td>
<td>52,769</td>
<td>$1,766,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>1,876,680</td>
<td>321,512</td>
<td>$13,923,000,000</td>
<td>656,970</td>
<td>$35,571,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6,478,109</td>
<td>364,104</td>
<td>$1,773,000,000</td>
<td>698,431</td>
<td>$5,422,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>6,631,138</td>
<td>209,567</td>
<td>$2,758,000,000</td>
<td>387,850</td>
<td>$7,865,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in California

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9%</td>
<td>23.8%</td>
<td>46.6%</td>
<td>40.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet,* 34 The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Colorado:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $3 Billion in 10 Years and $10 Billion in 20 Years

The number of obese adults has grown dramatically in Colorado over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Colorado could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Colorado could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Colorado, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Colorado

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,792,000,000</td>
<td>$10,794,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>333,206</td>
<td>54,596</td>
<td>$1,247,000,000</td>
<td>108,067</td>
<td>$4,043,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>64,932</td>
<td>3,684</td>
<td>$160,000,000</td>
<td>7,624</td>
<td>$313,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>231,944</td>
<td>45,232</td>
<td>$1,761,000,000</td>
<td>95,428</td>
<td>$4,735,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>847,137</td>
<td>55,978</td>
<td>$274,000,000</td>
<td>97,935</td>
<td>$759,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>875,842</td>
<td>29,984</td>
<td>$347,000,000</td>
<td>52,652</td>
<td>$949,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Colorado

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7%</td>
<td>20.7%</td>
<td>44.8%</td>
<td>39.0%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet.* The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *Fat as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Connecticut:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $7 Billion in 20 Years

The number of obese adults has grown dramatically in Connecticut over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Connecticut could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Connecticut could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

| Body mass index (BMI) is a calculation based on an individual’s weight and height: |
| BMI = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) x 703 |

| Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above. |

Projections for Annual Obesity-Related Health Spending in Connecticut, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Connecticut

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,626,000,000</td>
<td>$7,370,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>267,944</td>
<td>42,682</td>
<td>$887,000,000</td>
<td>83,932</td>
<td>$2,824,000,000</td>
<td></td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>58,115</td>
<td>2,900</td>
<td>$37,000,000</td>
<td>6,374</td>
<td>$118,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>214,986</td>
<td>37,776</td>
<td>$1,296,000,000</td>
<td>79,528</td>
<td>$3,316,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>708,945</td>
<td>43,219</td>
<td>$184,000,000</td>
<td>75,911</td>
<td>$506,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>710,198</td>
<td>20,911</td>
<td>$220,000,000</td>
<td>38,564</td>
<td>$608,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Connecticut

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8%</td>
<td>24.5%</td>
<td>46.5%</td>
<td>40.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. 50 The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Delaware:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $700 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in Delaware over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Delaware could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Delaware could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Delaware, 2010-2030

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Predicted Costs</th>
<th>Total Predicted Costs with 5% BMI Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$1,450</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$1,500</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>$1,550</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$1,600</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>$1,650</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>$1,700</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>$1,750</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>$1,800</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>$1,850</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>$1,900</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>$1,950</td>
<td></td>
</tr>
</tbody>
</table>

In millions of dollars
Obesity-Related Health Care Costs in Delaware

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$701,000,000</td>
<td>$1,912,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>79,275</td>
<td>13,017</td>
<td>$228,000,000</td>
<td>25,427</td>
<td>$721,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>14,714</td>
<td>1,125</td>
<td>$23,000,000</td>
<td>1,923</td>
<td>$47,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>57,340</td>
<td>10,786</td>
<td>$344,000,000</td>
<td>22,261</td>
<td>$871,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>187,986</td>
<td>11,575</td>
<td>$47,000,000</td>
<td>18,887</td>
<td>$119,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>184,829</td>
<td>5,633</td>
<td>$54,000,000</td>
<td>10,341</td>
<td>$143,000,000</td>
</tr>
</tbody>
</table>

* 2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
* Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Delaware

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2%</td>
<td>28.8%</td>
<td>64.7%</td>
<td>56.4%</td>
</tr>
</tbody>
</table>

* All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
- The *Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

- In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.

 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.

 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.

 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in District of Columbia:

Reducing the Average Body Mass Index in Washington, D.C. by 5 Percent Could Lead to Health Care Savings of More than $360 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in District of Columbia over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, District of Columbia could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if District of Columbia could reduce the average body mass index (BMI) of its residents by only 5 percent, D.C. could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.65

\textbf{Body mass index} (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703 \]

\textbf{Obesity} is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

\textbf{Projections for Annual Obesity-Related Health Spending in District of Columbia, 2010-2030}

*In millions of dollars
Obesity-Related Health Care Costs in District of Columbia

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$364,000,000</td>
<td>$1,026,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>40,312</td>
<td>6,155</td>
<td>$133,000,000</td>
<td>11,705</td>
<td>$433,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>8,417</td>
<td>371</td>
<td>$6,000,000</td>
<td>667</td>
<td>$7,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>29,219</td>
<td>4,721</td>
<td>$165,000,000</td>
<td>9,295</td>
<td>$406,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>98,237</td>
<td>5,296</td>
<td>$26,000,000</td>
<td>9,665</td>
<td>$72,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>103,440</td>
<td>3,424</td>
<td>$38,000,000</td>
<td>6,582</td>
<td>$118,000,000</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in District of Columbia

<table>
<thead>
<tr>
<th></th>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.8%</td>
<td>23.7%</td>
<td>32.6%</td>
<td>29.1%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Florida:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $12 Billion in 10 Years and $34 Billion in 20 Years

The number of obese adults has grown dramatically in Florida over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Florida could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Florida could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches}} \times \text{Height in inches} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

<table>
<thead>
<tr>
<th>Projections for Annual Obesity-Related Health Spending in Florida, 2010-2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>$31,500</td>
</tr>
<tr>
<td>$32,000</td>
</tr>
<tr>
<td>$32,500</td>
</tr>
<tr>
<td>$33,000</td>
</tr>
<tr>
<td>$33,500</td>
</tr>
<tr>
<td>$34,000</td>
</tr>
<tr>
<td>$34,500</td>
</tr>
<tr>
<td>$35,000</td>
</tr>
<tr>
<td>$35,500</td>
</tr>
<tr>
<td>$36,000</td>
</tr>
<tr>
<td>$36,500</td>
</tr>
</tbody>
</table>

In millions of dollars
Obesity-Related Health Care Costs in Florida

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12,541,000,000</td>
<td>$34,436,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>1,722,611</td>
<td>260,135</td>
<td>$4,459,000,000</td>
<td>501,976</td>
<td>$14,074,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>352,183</td>
<td>24,965</td>
<td>$328,000,000</td>
<td>43,451</td>
<td>$656,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>1,412,354</td>
<td>234,408</td>
<td>$5,913,000,000</td>
<td>465,385</td>
<td>$14,684,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4,372,562</td>
<td>235,932</td>
<td>$827,000,000</td>
<td>401,924</td>
<td>$2,175,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>4,225,438</td>
<td>117,776</td>
<td>$1,013,000,000</td>
<td>218,399</td>
<td>$2,849,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings

*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Florida

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3%</td>
<td>26.6%</td>
<td>58.6%</td>
<td>51.1%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Georgia:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $7 Billion in 10 Years and $22 Billion in 20 Years

The number of obese adults has grown dramatically in Georgia over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Georgia could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Georgia could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.\(^8\)

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Georgia, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Georgia

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$7,963,000,000</td>
<td>$22,743,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>754,593</td>
<td>123,475</td>
<td>$2,563,000,000</td>
<td>238,019</td>
<td>$8,324,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>126,027</td>
<td>6,380</td>
<td>$382,000,000</td>
<td>12,073</td>
<td>$812,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>465,535</td>
<td>87,846</td>
<td>$3,735,000,000</td>
<td>185,409</td>
<td>$9,928,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,649,642</td>
<td>106,004</td>
<td>$535,000,000</td>
<td>184,624</td>
<td>$1,492,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,707,454</td>
<td>58,793</td>
<td>$752,000,000</td>
<td>108,753</td>
<td>$2,196,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Georgia

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8%</td>
<td>28.0%</td>
<td>53.6%</td>
<td>47.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyAmericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Hawaii:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $950 Million in 10 Years and $2 billion in 20 Years

The number of obese adults has grown dramatically in Hawaii over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Hawaii could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Hawaii could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.89

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Hawaii, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Hawaii

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$976,000,000</td>
<td>$2,704,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>105,063</td>
<td>15,879</td>
<td>$319,000,000</td>
<td>31,634</td>
<td>$1,051,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>21,062</td>
<td>1,210</td>
<td>$27,000,000</td>
<td>2,323</td>
<td>$74,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>78,240</td>
<td>13,363</td>
<td>$482,000,000</td>
<td>26,286</td>
<td>$1,153,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>264,816</td>
<td>14,587</td>
<td>$64,000,000</td>
<td>26,740</td>
<td>$184,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>265,338</td>
<td>8,084</td>
<td>$84,000,000</td>
<td>14,834</td>
<td>$249,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Hawaii

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6%</td>
<td>21.8%</td>
<td>51.8%</td>
<td>45.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/− 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/− 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/− 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/− 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/− 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
- The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

- In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Idaho:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $1 Billion in 10 Years and $3 Billion in 20 Years

The number of obese adults has grown dramatically in Idaho over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Idaho could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Idaho could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Idaho, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Idaho

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,195,000,000</td>
<td>$3,280,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>119,270</td>
<td>19,384</td>
<td>$404,000,000</td>
<td>36,677</td>
<td>$1,274,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>21,778</td>
<td>1,474</td>
<td>$29,000,000</td>
<td>2,710</td>
<td>$51,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>85,114</td>
<td>15,232</td>
<td>$585,000,000</td>
<td>30,146</td>
<td>$1,454,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>283,475</td>
<td>17,276</td>
<td>$77,000,000</td>
<td>29,084</td>
<td>$213,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>285,313</td>
<td>8,828</td>
<td>$101,000,000</td>
<td>16,151</td>
<td>$286,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Idaho

<table>
<thead>
<tr>
<th></th>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.1%</td>
<td>27.0%</td>
<td>53.0%</td>
<td>46.9%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at www.healthyamericans.org).
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in The Lancet in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 F as in Fat report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.100

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the Community Guide for Preventive Services, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.101
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Illinois:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $9 Billion in 10 Years and $28 Billion in 20 Years

The number of obese adults has grown dramatically in Illinois over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Illinois could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Illinois could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

The **Body mass index (BMI)** is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Illinois, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Illinois

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,852,000,000</td>
<td>$28,185,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,014,097</td>
<td>167,300</td>
<td>$3,434,000,000</td>
<td>325,721</td>
<td>$11,141,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>189,693</td>
<td>11,325</td>
<td>$163,000,000</td>
<td>23,036</td>
<td>$353,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>719,649</td>
<td>129,207</td>
<td>$4,649,000,000</td>
<td>268,967</td>
<td>$12,073,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2,369,745</td>
<td>145,937</td>
<td>$680,000,000</td>
<td>258,801</td>
<td>$1,889,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>2,387,762</td>
<td>78,116</td>
<td>$923,000,000</td>
<td>149,927</td>
<td>$2,730,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Illinois

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3%</td>
<td>27.1%</td>
<td>53.7%</td>
<td>47.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs.\(^{110}\) NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies.\(^{111}\) Some of the key findings included:\(^{112}\)

 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Indiana:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $5 Billion in 10 Years and $13 Billion in 20 Years

The number of obese adults has grown dramatically in Indiana over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Indiana could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Indiana could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.113

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{(Height in inches)} \times \text{(Height in inches)}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Indiana, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Indiana

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5,020,000,000</td>
<td>$13,400,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>544,815</td>
<td>89,021</td>
<td>$1,635,000,000</td>
<td>170,743</td>
<td>$5,160,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>99,188</td>
<td>6,387</td>
<td>$122,000,000</td>
<td>10,883</td>
<td>$256,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>386,193</td>
<td>72,338</td>
<td>$2,499,000,000</td>
<td>140,700</td>
<td>$5,922,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,249,620</td>
<td>77,095</td>
<td>$334,000,000</td>
<td>128,579</td>
<td>$864,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,243,233</td>
<td>40,079</td>
<td>$430,000,000</td>
<td>74,684</td>
<td>$1,200,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Indiana

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3%</td>
<td>30.8%</td>
<td>56.0%</td>
<td>49.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
- *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

- In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
The number of obese adults has grown dramatically in Iowa over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Iowa could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Iowa could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703 \]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

In millions of dollars
Obesity-Related Health Care Costs in Iowa

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2,059,000,000</td>
<td>$5,702,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>262,746</td>
<td>40,851</td>
<td>$726,000,000</td>
<td>77,783</td>
<td>$2,287,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>51,477</td>
<td>3,460</td>
<td>$84,000,000</td>
<td>5,849</td>
<td>$160,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>206,491</td>
<td>33,808</td>
<td>$940,000,000</td>
<td>67,065</td>
<td>$2,373,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>636,409</td>
<td>34,573</td>
<td>$135,000,000</td>
<td>60,940</td>
<td>$369,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>628,692</td>
<td>18,527</td>
<td>$176,000,000</td>
<td>34,635</td>
<td>$513,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Iowa

<table>
<thead>
<tr>
<th></th>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.2%</td>
<td>29.0%</td>
<td>54.4%</td>
<td>47.6%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Kansas:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $5 Billion in 20 Years

The number of obese adults has grown dramatically in Kansas over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Kansas could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Kansas could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Kansas, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Kansas

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2,188,000,000</td>
<td>$5,979,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>239,691</td>
<td>39,537</td>
<td>$741,000,000</td>
<td>77,294</td>
<td>$2,390,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>44,590</td>
<td>2,527</td>
<td>$62,000,000</td>
<td>4,939</td>
<td>$132,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>176,438</td>
<td>31,727</td>
<td>$1,051,000,000</td>
<td>63,052</td>
<td>$2,560,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>558,427</td>
<td>34,943</td>
<td>$144,000,000</td>
<td>57,769</td>
<td>$379,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>555,211</td>
<td>17,199</td>
<td>$189,000,000</td>
<td>33,105</td>
<td>$515,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Kansas

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5%</td>
<td>29.6%</td>
<td>62.1%</td>
<td>55.1%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.

 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.

 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.

 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Kentucky:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $3 Billion in 10 Years and $9 Billion in 20 Years

The number of obese adults has grown dramatically in Kentucky over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Kentucky could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Kentucky could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.¹³⁷

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Kentucky, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Kentucky

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,376,000,000</td>
<td>$9,437,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>394,029</td>
<td>63,793</td>
<td>$1,104,000,000</td>
<td>124,701</td>
<td>$3,503,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>68,075</td>
<td>4,151</td>
<td>$118,000,000</td>
<td>8,651</td>
<td>$277,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>264,958</td>
<td>52,389</td>
<td>$1,656,000,000</td>
<td>107,355</td>
<td>$4,298,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>881,343</td>
<td>54,617</td>
<td>$219,000,000</td>
<td>93,198</td>
<td>$576,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>876,143</td>
<td>29,187</td>
<td>$286,000,000</td>
<td>53,350</td>
<td>$790,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Kentucky

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6%</td>
<td>30.4%</td>
<td>60.1%</td>
<td>53.2%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/− 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/− 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/− 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/− 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/− 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Louisiana:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $3 Billion in 10 Years and $9 Billion in 20 Years

The number of obese adults has grown dramatically in Louisiana over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Louisiana could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Louisiana could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Louisiana, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Louisiana

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,657,000,000</td>
<td>$9,839,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>398,422</td>
<td>66,884</td>
<td>$1,212,000,000</td>
<td>127,455</td>
<td>$3,882,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>69,400</td>
<td>3,934</td>
<td>$156,000,000</td>
<td>7,640</td>
<td>$302,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>274,399</td>
<td>50,964</td>
<td>$1,723,000,000</td>
<td>99,640</td>
<td>$4,120,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>882,898</td>
<td>55,539</td>
<td>$241,000,000</td>
<td>91,451</td>
<td>$618,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>877,591</td>
<td>29,645</td>
<td>$327,000,000</td>
<td>55,676</td>
<td>$915,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Louisiana

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.0%</td>
<td>33.4%</td>
<td>62.1%</td>
<td>55.4%</td>
</tr>
</tbody>
</table>

All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Maine:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $1 Billion in 10 Years and $2 billion in 20 Years

The number of obese adults has grown dramatically in Maine over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Maine could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Maine could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703 \]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

![Projections for Annual Obesity-Related Health Spending in Maine, 2010-2030](image)

In millions of dollars
Obesity-Related Health Care Costs in Maine

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,019,000,000</td>
<td>$2,870,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120,878</td>
<td>19,949</td>
<td>$344,000,000</td>
<td>40,550</td>
<td>$1,114,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obesity-Related Cancers*</th>
<th>23,721</th>
<th>1,886</th>
<th>$27,000,000</th>
<th>3,679</th>
<th>$53,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>91,512</td>
<td>17,970</td>
<td>$491,000,000</td>
<td>38,398</td>
<td>$1,265,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>296,784</td>
<td>19,113</td>
<td>$73,000,000</td>
<td>33,364</td>
<td>$196,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>290,329</td>
<td>9,457</td>
<td>$86,000,000</td>
<td>18,356</td>
<td>$249,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Maine

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3%</td>
<td>27.8%</td>
<td>55.2%</td>
<td>49.0%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:¹⁵⁵

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.¹⁵⁶

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.¹⁵⁷
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Maryland:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $4 Billion in 10 Years and $13 Billion in 20 Years

The number of obese adults has grown dramatically in Maryland over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Maryland could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Maryland could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.\(^1\)

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Maryland, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Maryland

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,935,000,000</td>
<td>$13,836,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>469,294</td>
<td>79,731</td>
<td>$1,580,000,000</td>
<td>158,413</td>
<td>$5,211,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>86,375</td>
<td>5,537</td>
<td>$156,000,000</td>
<td>10,841</td>
<td>$339,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>320,731</td>
<td>63,295</td>
<td>$2,408,000,000</td>
<td>129,330</td>
<td>$6,099,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,083,304</td>
<td>71,397</td>
<td>$338,000,000</td>
<td>126,707</td>
<td>$930,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,098,166</td>
<td>37,884</td>
<td>$458,000,000</td>
<td>70,406</td>
<td>$1,262,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Maryland

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0%</td>
<td>28.3%</td>
<td>58.8%</td>
<td>52.2%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Massachusetts:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $5 Billion in 10 Years and $14 Billion in 20 Years

The number of obese adults has grown dramatically in Massachusetts over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and workplaces, Massachusetts could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Massachusetts could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Massachusetts, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Massachusetts

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5,045,000,000</td>
<td>$14,055,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>483,855</td>
<td>77,206</td>
<td>$1,656,000,000</td>
<td>155,532</td>
<td>$5,436,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>102,436</td>
<td>6,851</td>
<td>$250,000,000</td>
<td>13,109</td>
<td>$489,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>375,028</td>
<td>65,085</td>
<td>$2,358,000,000</td>
<td>138,075</td>
<td>$5,918,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,258,549</td>
<td>75,888</td>
<td>$340,000,000</td>
<td>135,308</td>
<td>$952,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,270,472</td>
<td>40,777</td>
<td>$439,000,000</td>
<td>76,086</td>
<td>$1,257,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Massachusetts

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6%</td>
<td>22.7%</td>
<td>48.7%</td>
<td>42.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at [link])
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Michigan:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $8 Billion in 10 Years and $24 Billion in 20 Years

The number of obese adults has grown dramatically in Michigan over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Michigan could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Michigan could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.177

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Michigan, 2010-2030

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Predicted Costs</th>
<th>Total Predicted Costs with 5% BMI Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$17,000</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$18,000</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>$19,000</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$20,000</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>$21,000</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>$22,000</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>$23,000</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>$24,000</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>$25,000</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>$26,000</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>$27,000</td>
<td></td>
</tr>
</tbody>
</table>

In millions of dollars
Obesity-Related Health Care Costs in Michigan

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$8,710,000,000</td>
<td>$24,187,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>861,006</td>
<td>147,056</td>
<td>$2,777,000,000</td>
<td>294,113</td>
<td>$9,067,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>150,809</td>
<td>9,382</td>
<td>$203,000,000</td>
<td>18,370</td>
<td>$540,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>601,065</td>
<td>117,033</td>
<td>$4,401,000,000</td>
<td>241,967</td>
<td>$10,943,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,934,745</td>
<td>122,761</td>
<td>$559,000,000</td>
<td>211,548</td>
<td>$1,480,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,929,807</td>
<td>67,553</td>
<td>$771,000,000</td>
<td>126,613</td>
<td>$2,161,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Michigan

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2%</td>
<td>31.3%</td>
<td>59.4%</td>
<td>53.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in The Lancet in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 F as in Fat report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.180

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.181
• The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Minnesota:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $4 Billion in 10 Years and $11 Billion in 20 Years

The number of obese adults has grown dramatically in Minnesota over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Minnesota could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Minnesota could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Minnesota, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Minnesota

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,189,000,000</td>
<td>$11,630,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>410,004</td>
<td>65,368</td>
<td>$1,350,000,000</td>
<td>127,368</td>
<td>$4,367,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>77,233</td>
<td>5,024</td>
<td>$118,000,000</td>
<td>8,338</td>
<td>$230,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>298,457</td>
<td>54,304</td>
<td>$2,071,000,000</td>
<td>111,066</td>
<td>$5,242,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>990,242</td>
<td>60,985</td>
<td>$286,000,000</td>
<td>105,240</td>
<td>$783,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>998,206</td>
<td>31,481</td>
<td>$365,000,000</td>
<td>56,923</td>
<td>$1,013,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Minnesota

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6%</td>
<td>25.7%</td>
<td>54.7%</td>
<td>47.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Mississippi:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $6 Billion in 20 Years

The number of obese adults has grown dramatically in Mississippi over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Mississippi could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Mississippi could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds. 193

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Mississippi, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Mississippi

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,270,000,000</td>
<td>$6,120,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>284,269</td>
<td>45,988</td>
<td>$774,000,000</td>
<td>86,347</td>
<td>$2,472,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>46,018</td>
<td>2,591</td>
<td>$34,000,000</td>
<td>4,795</td>
<td>$79,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>183,417</td>
<td>35,444</td>
<td>$1,122,000,000</td>
<td>66,897</td>
<td>$2,681,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>595,822</td>
<td>35,861</td>
<td>$145,000,000</td>
<td>56,741</td>
<td>$357,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>589,477</td>
<td>19,509</td>
<td>$191,000,000</td>
<td>35,176</td>
<td>$521,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Mississippi

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4%</td>
<td>34.9%</td>
<td>66.7%</td>
<td>59.9%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Missouri:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $4 Billion in 10 Years and $13 Billion in 20 Years

The number of obese adults has grown dramatically in Missouri over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Missouri could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Missouri could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Missouri, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Missouri

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$4,718,000,000</td>
<td>$13,368,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>535,793</td>
<td>90,942</td>
<td>$1,575,000,000</td>
<td>179,659</td>
<td>$5,084,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>96,772</td>
<td>6,852</td>
<td>$186,000,000</td>
<td>13,704</td>
<td>$438,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>383,542</td>
<td>73,330</td>
<td>$2,290,000,000</td>
<td>152,070</td>
<td>$5,935,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,221,011</td>
<td>77,117</td>
<td>$295,000,000</td>
<td>133,798</td>
<td>$823,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,207,427</td>
<td>40,031</td>
<td>$369,000,000</td>
<td>75,434</td>
<td>$1,082,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Missouri

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.9%</td>
<td>30.3%</td>
<td>61.9%</td>
<td>55.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Montana:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $700 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in Montana over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Montana could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Montana could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

<table>
<thead>
<tr>
<th>Projections for Annual Obesity-Related Health Spending in Montana, 2010-2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Predicted Costs</td>
</tr>
<tr>
<td>Total Predicted Costs with 5% BMI Reduction</td>
</tr>
</tbody>
</table>

In millions of dollars
Obesity-Related Health Care Costs in Montana

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$715,000,000</td>
<td>$1,939,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>83,849</td>
<td>13,156</td>
<td>$234,000,000</td>
<td>26,522</td>
<td>$758,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>16,490</td>
<td>868</td>
<td>$17,000,000</td>
<td>1,637</td>
<td>$46,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>64,244</td>
<td>12,018</td>
<td>$358,000,000</td>
<td>23,617</td>
<td>$847,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>212,207</td>
<td>12,428</td>
<td>$49,000,000</td>
<td>21,391</td>
<td>$126,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>207,585</td>
<td>6,418</td>
<td>$64,000,000</td>
<td>11,948</td>
<td>$175,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Montana

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.0%</td>
<td>24.6%</td>
<td>53.6%</td>
<td>47.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 Fat as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/− 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/− 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/− 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/− 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/− 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Nebraska:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $1 Billion in 10 Years and $3 Billion in 20 Years

The number of obese adults has grown dramatically in Nebraska over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Nebraska could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Nebraska could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches}} \times \text{Height in inches} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

![Graph showing projected obesity-related health spending in Nebraska from 2010 to 2030]

In millions of dollars
Obesity-Related Health Care Costs in Nebraska

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,334,000,000</td>
<td>$3,686,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>152,276</td>
<td>24,784</td>
<td>$458,000,000</td>
<td>47,577</td>
<td>$1,456,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>29,132</td>
<td>1,935</td>
<td>$41,000,000</td>
<td>3,243</td>
<td>$79,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>116,013</td>
<td>20,435</td>
<td>$629,000,000</td>
<td>40,796</td>
<td>$1,593,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>364,659</td>
<td>21,872</td>
<td>$91,000,000</td>
<td>36,005</td>
<td>$238,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>361,250</td>
<td>11,093</td>
<td>$116,000,000</td>
<td>20,601</td>
<td>$321,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Nebraska

<table>
<thead>
<tr>
<th></th>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.2%</td>
<td>28.4%</td>
<td>56.9%</td>
<td>50.6%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity. A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Nevada:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $5 Billion in 20 Years

The number of obese adults has grown dramatically in Nevada over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Nevada could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Nevada could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Nevada, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Nevada

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,095,000,000</td>
<td>$5,921,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>214,217</td>
<td>$690,000,000</td>
<td>65,087</td>
<td>$2,172,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>37,310</td>
<td>$82,000,000</td>
<td>4,521</td>
<td>$164,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>144,554</td>
<td>$989,000,000</td>
<td>55,556</td>
<td>$2,653,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>511,848</td>
<td>$149,000,000</td>
<td>53,677</td>
<td>$401,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td>512,502</td>
<td>$191,000,000</td>
<td>30,746</td>
<td>$540,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Nevada

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1%</td>
<td>24.5%</td>
<td>49.6%</td>
<td>43.8%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in New Hampshire:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $1 Billion in 10 Years and $3 Billion in 20 Years

The number of obese adults has grown dramatically in New Hampshire over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, New Hampshire could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if New Hampshire could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703 \]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in New Hampshire, 2010-2030

*In millions of dollars
Obesity-Related Health Care Costs in New Hampshire

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,158,000,000</td>
<td>$3,257,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>108,764</td>
<td>18,692</td>
<td>$385,000,000</td>
<td>38,425</td>
<td>$1,239,000,000</td>
</tr>
<tr>
<td>*Obesity-Related Cancers</td>
<td>20,353</td>
<td>1,318</td>
<td>$31,000,000</td>
<td>2,715</td>
<td>$65,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>76,996</td>
<td>16,082</td>
<td>$561,000,000</td>
<td>35,077</td>
<td>$1,467,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>263,771</td>
<td>18,455</td>
<td>$83,000,000</td>
<td>31,320</td>
<td>$217,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>262,518</td>
<td>8,806</td>
<td>$97,000,000</td>
<td>16,807</td>
<td>$265,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in New Hampshire

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9%</td>
<td>26.2%</td>
<td>57.7%</td>
<td>50.8%</td>
</tr>
</tbody>
</table>

All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in New Jersey:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $450 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in New Jersey over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, New Jersey could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if New Jersey could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

| Projections for Annual Obesity-Related Health Spending in New Jersey, 2010-2030 |
|---------------------------------|---------------------------------|
| | $1,000 |
| | $1,050 |
| | $1,100 |
| | $1,150 |
| | $1,200 |
| | $1,250 |
| | $1,300 |
| | $1,350 |
| | $1,400 |
| | $1,450 |
| 2010 | Total Predicted Costs |
| | Total Predicted Costs with 5% BMI Reduction |
| 2012 | |
| 2014 | |
| 2016 | |
| 2018 | |
| 2020 | |
| 2022 | |
| 2024 | |
| 2026 | |
| 2028 | |
| 2030 | |

*In millions of dollars
Obesity-Related Health Care Costs in New Jersey

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$471,000,000</td>
<td>$1,391,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>607,689</td>
<td>103,119</td>
<td>$158,000,000</td>
<td>202,357</td>
<td>$520,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>110,882</td>
<td>6,616</td>
<td>$13,000,000</td>
<td>13,232</td>
<td>$31,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>398,981</td>
<td>77,009</td>
<td>$220,000,000</td>
<td>168,660</td>
<td>$610,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,438,554</td>
<td>100,473</td>
<td>$37,000,000</td>
<td>177,570</td>
<td>$104,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,504,360</td>
<td>48,075</td>
<td>$40,000,000</td>
<td>93,945</td>
<td>$119,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings

*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in New Jersey

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3%</td>
<td>23.7%</td>
<td>48.6%</td>
<td>42.3%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in New Mexico:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $1 Billion in 10 Years and $4 Billion in 20 Years

The number of obese adults has grown dramatically in New Mexico over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, New Mexico could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if New Mexico could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

![Graph showing projections for annual obesity-related health spending in New Mexico, 2010-2030.](image)

In millions of dollars
Obesity-Related Health Care Costs in New Mexico

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,483,000,000</td>
<td>$4,095,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>173,054</td>
<td>26,569</td>
<td>$486,000,000</td>
<td>52,597</td>
<td>$1,599,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>32,920</td>
<td>1,978</td>
<td>$39,000,000</td>
<td>3,665</td>
<td>$72,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>123,330</td>
<td>21,384</td>
<td>$730,000,000</td>
<td>43,102</td>
<td>$1,782,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>419,506</td>
<td>23,821</td>
<td>$95,000,000</td>
<td>40,458</td>
<td>$251,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>413,967</td>
<td>13,701</td>
<td>$135,000,000</td>
<td>25,757</td>
<td>$391,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in New Mexico

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6%</td>
<td>26.3%</td>
<td>54.2%</td>
<td>48.8%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in New York:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $14 Billion in 10 Years and $40 Billion in 20 Years

The number of obese adults has grown dramatically in New York over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, New York could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if New York could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in New York, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in New York

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$14,097,000,000</td>
<td>$40,017,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,516,923</td>
<td>241,952</td>
<td>$4,774,000,000</td>
<td>473,588</td>
<td>$15,726,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>306,188</td>
<td>14,794</td>
<td>$206,000,000</td>
<td>29,392</td>
<td>$481,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>1,140,661</td>
<td>194,652</td>
<td>$6,777,000,000</td>
<td>410,326</td>
<td>$17,296,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3,749,386</td>
<td>219,567</td>
<td>$992,000,000</td>
<td>395,338</td>
<td>$2,793,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>3,752,890</td>
<td>115,429</td>
<td>$1,347,000,000</td>
<td>220,151</td>
<td>$3,718,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in New York

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3%</td>
<td>24.5%</td>
<td>50.9%</td>
<td>44.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases. In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in North Carolina:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $7 Billion in 10 Years and $21 Billion in 20 Years

The number of obese adults has grown dramatically in North Carolina over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, North Carolina could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if North Carolina could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Predicted Costs</th>
<th>Total Predicted Costs with 5% BMI Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$16,000</td>
<td>$16,000</td>
</tr>
<tr>
<td>2012</td>
<td>$16,500</td>
<td>$16,500</td>
</tr>
<tr>
<td>2014</td>
<td>$17,000</td>
<td>$17,000</td>
</tr>
<tr>
<td>2016</td>
<td>$17,500</td>
<td>$17,500</td>
</tr>
<tr>
<td>2018</td>
<td>$18,000</td>
<td>$18,000</td>
</tr>
<tr>
<td>2020</td>
<td>$18,500</td>
<td>$18,500</td>
</tr>
<tr>
<td>2022</td>
<td>$19,000</td>
<td>$19,000</td>
</tr>
<tr>
<td>2024</td>
<td>$19,500</td>
<td>$19,500</td>
</tr>
<tr>
<td>2026</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

In millions of dollars
Obesity-Related Health Care Costs in North Carolina

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7,633,000,000</td>
<td>$21,101,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>820,118</td>
<td>134,610</td>
<td>$2,363,000,000</td>
<td>261,785</td>
<td>$7,746,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>142,818</td>
<td>9,174</td>
<td>$371,000,000</td>
<td>17,382</td>
<td>$742,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>543,752</td>
<td>106,510</td>
<td>$3,733,000,000</td>
<td>213,310</td>
<td>$9,360,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,831,530</td>
<td>113,366</td>
<td>$486,000,000</td>
<td>195,735</td>
<td>$1,311,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,843,890</td>
<td>62,284</td>
<td>$679,000,000</td>
<td>115,491</td>
<td>$1,942,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in North Carolina

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3%</td>
<td>29.1%</td>
<td>58.0%</td>
<td>51.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in North Dakota:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $400 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in North Dakota over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, North Dakota could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if North Dakota could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in North Dakota, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in North Dakota

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$413,000,000</td>
<td>$1,177,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>58,887</td>
<td>8,809</td>
<td>$150,000,000</td>
<td>16,873</td>
<td>$491,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>11,572</td>
<td>739</td>
<td>$19,000,000</td>
<td>1,272</td>
<td>$38,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>46,993</td>
<td>7,222</td>
<td>$183,000,000</td>
<td>14,116</td>
<td>$467,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>145,630</td>
<td>7,667</td>
<td>$26,000,000</td>
<td>13,248</td>
<td>$75,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>141,984</td>
<td>4,001</td>
<td>$39,000,000</td>
<td>7,585</td>
<td>$110,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in North Dakota

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2%</td>
<td>27.8%</td>
<td>57.1%</td>
<td>49.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*274. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Ohio:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $9 Billion in 10 Years and $26 Billion in 20 Years

The number of obese adults has grown dramatically in Ohio over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Ohio could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Ohio could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703 \]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Ohio, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Ohio

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,628,000,000</td>
<td>$26,328,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>1,012,377</td>
<td>174,329</td>
<td>$3,075,000,000</td>
<td>342,192</td>
<td>$9,899,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>185,989</td>
<td>12,469</td>
<td>$475,000,000</td>
<td>22,974</td>
<td>$977,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>732,181</td>
<td>145,120</td>
<td>$4,726,000,000</td>
<td>293,011</td>
<td>$11,718,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2,336,929</td>
<td>150,084</td>
<td>$621,000,000</td>
<td>249,255</td>
<td>$1,602,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>2,316,148</td>
<td>75,273</td>
<td>$730,000,000</td>
<td>144,774</td>
<td>$2,131,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Ohio

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1%</td>
<td>29.6%</td>
<td>59.8%</td>
<td>53.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:
 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Oklahoma:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $7 Billion in 20 Years

The number of obese adults has grown dramatically in Oklahoma over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Oklahoma could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Oklahoma could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Oklahoma, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Oklahoma

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,755,000,000</td>
<td>$7,444,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9%</td>
<td>31.1%</td>
<td>66.4%</td>
<td>58.6%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
- *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

- In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Oregon:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $7 Billion in 20 Years

The number of obese adults has grown dramatically in Oregon over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Oregon could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Oregon could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703 \]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Oregon, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Oregon

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,791,000,000</td>
<td>$7,938,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>313,737</td>
<td>49,676</td>
<td>$936,000,000</td>
<td>98,578</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>58,349</td>
<td>3,678</td>
<td>$89,000,000</td>
<td>7,240</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>225,575</td>
<td>40,229</td>
<td>$1,330,000,000</td>
<td>82,200</td>
</tr>
<tr>
<td>Hypertension</td>
<td>749,127</td>
<td>43,442</td>
<td>$182,000,000</td>
<td>77,631</td>
</tr>
<tr>
<td>Arthritis</td>
<td>751,876</td>
<td>24,122</td>
<td>$251,000,000</td>
<td>47,508</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Oregon

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6%</td>
<td>26.7%</td>
<td>48.8%</td>
<td>43.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Pennsylvania:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $8 Billion in 10 Years and $24 Billion in 20 Years

The number of obese adults has grown dramatically in Pennsylvania over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Pennsylvania could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Pennsylvania could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Pennsylvania, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Pennsylvania

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8,774,000,000</td>
<td>$24,498,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,135,646</td>
<td>185,919</td>
<td>$3,208,000,000</td>
<td>366,995</td>
<td>$10,318,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>227,588</td>
<td>15,674</td>
<td>$217,000,000</td>
<td>28,162</td>
<td>$393,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>892,129</td>
<td>150,111</td>
<td>$3,956,000,000</td>
<td>312,456</td>
<td>$9,867,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2,752,209</td>
<td>163,109</td>
<td>$609,000,000</td>
<td>284,931</td>
<td>$1,656,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>2,691,043</td>
<td>84,103</td>
<td>$788,000,000</td>
<td>163,746</td>
<td>$2,267,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Pennsylvania

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2%</td>
<td>28.6%</td>
<td>56.7%</td>
<td>50.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Rhode Island:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $850 Million in 10 Years and $2 billion in 20 Years

The number of obese adults has grown dramatically in Rhode Island over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Rhode Island could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Rhode Island could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Rhode Island, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Rhode Island

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$855,000,000</td>
<td>$2,478,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>82,811</td>
<td>14,308</td>
<td>$297,000,000</td>
<td>29,889</td>
<td>$1,018,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>17,094</td>
<td>1,041</td>
<td>$29,000,000</td>
<td>2,092</td>
<td>$68,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>64,087</td>
<td>11,722</td>
<td>$394,000,000</td>
<td>25,063</td>
<td>$1,009,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>207,285</td>
<td>12,973</td>
<td>$57,000,000</td>
<td>23,602</td>
<td>$155,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>208,610</td>
<td>7,170</td>
<td>$79,000,000</td>
<td>13,856</td>
<td>$229,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Rhode Island

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8%</td>
<td>25.4%</td>
<td>53.8%</td>
<td>48.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet.314 The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in The Lancet in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million; and
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 F as in Fat report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the Community Guide for Preventive Services, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in South Carolina:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $3 Billion in 10 Years and $9 Billion in 20 Years

The number of obese adults has grown dramatically in South Carolina over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, South Carolina could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if South Carolina could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{(Height in inches)} \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in South Carolina, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in South Carolina

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$3,319,000,000</td>
<td>$9,309,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>429,273</td>
<td>68,972</td>
<td>$1,099,000,000</td>
<td>133,498</td>
<td>$3,548,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>75,148</td>
<td>5,007</td>
<td>$52,000,000</td>
<td>9,124</td>
<td>$88,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>289,176</td>
<td>56,853</td>
<td>$1,682,000,000</td>
<td>114,735</td>
<td>$4,297,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>961,722</td>
<td>56,291</td>
<td>$202,000,000</td>
<td>101,446</td>
<td>$568,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>947,357</td>
<td>29,432</td>
<td>$278,000,000</td>
<td>58,678</td>
<td>$803,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Obesity Rates in South Carolina

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6%</td>
<td>30.8%</td>
<td>62.9%</td>
<td>55.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet,* 322 The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:
- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in South Dakota:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $550 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in South Dakota over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, South Dakota could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if South Dakota could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in South Dakota, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in South Dakota

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$569,000,000</td>
<td>$1,553,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>70,269</td>
<td>11,166</td>
<td>$196,000,000</td>
<td>21,780</td>
<td>$638,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>13,490</td>
<td>832</td>
<td>$8,000,000</td>
<td>1,467</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>54,373</td>
<td>9,246</td>
<td>$277,000,000</td>
<td>17,899</td>
<td>$660,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>169,415</td>
<td>9,724</td>
<td>$38,000,000</td>
<td>16,721</td>
<td>$103,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>166,267</td>
<td>4,928</td>
<td>$52,000,000</td>
<td>9,625</td>
<td>$145,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
* Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in South Dakota

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5%</td>
<td>28.1%</td>
<td>60.4%</td>
<td>53.3%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHL adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity. A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Tennessee:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $4 Billion in 10 Years and $13 Billion in 20 Years

The number of obese adults has grown dramatically in Tennessee over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Tennessee could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Tennessee could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Tennessee, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Tennessee

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,928,000,000</td>
<td>$13,827,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>594,871</td>
<td>102,390</td>
<td>$1,676,000,000</td>
<td>201,257</td>
<td>$5,505,000,000</td>
<td></td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>101,301</td>
<td>7,236</td>
<td>$124,000,000</td>
<td>14,151</td>
<td>$246,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>396,752</td>
<td>79,145</td>
<td>$2,380,000,000</td>
<td>162,325</td>
<td>$6,034,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,299,689</td>
<td>83,372</td>
<td>$321,000,000</td>
<td>139,977</td>
<td>$842,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,289,571</td>
<td>44,119</td>
<td>$428,000,000</td>
<td>84,332</td>
<td>$1,201,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Tennessee

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4%</td>
<td>29.2%</td>
<td>63.4%</td>
<td>57.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Texas:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $19 Billion in 10 Years and $54 Billion in 20 Years

The number of obese adults has grown dramatically in Texas over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Texas could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Texas could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703 \]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Texas, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Texas

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$19,386,000,000</td>
<td>$54,194,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,962,059</td>
<td>321,447</td>
<td>$6,597,000,000</td>
<td>605,152</td>
<td>$21,338,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>328,379</td>
<td>20,540</td>
<td>$560,000,000</td>
<td>34,918</td>
<td>$1,061,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>1,261,654</td>
<td>230,559</td>
<td>$9,169,000,000</td>
<td>465,739</td>
<td>$23,124,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4,300,252</td>
<td>271,638</td>
<td>$1,352,000,000</td>
<td>472,671</td>
<td>$3,777,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>4,426,828</td>
<td>149,683</td>
<td>$1,704,000,000</td>
<td>270,868</td>
<td>$4,891,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

*Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Texas

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0%</td>
<td>30.4%</td>
<td>57.2%</td>
<td>50.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in The Lancet in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- $45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 F as in Fat report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the Community Guide for Preventive Services, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Utah:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $2 Billion in 10 Years and $5 Billion in 20 Years

The number of obese adults has grown dramatically in Utah over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Utah could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Utah could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Utah, 2010-2030

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Predicted Costs</th>
<th>Total Predicted Costs with 5% BMI Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$4,200</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$4,400</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>$4,600</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$4,800</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>$5,000</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>$5,200</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>$5,400</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>$5,600</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>$5,800</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>$6,000</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>$6,200</td>
<td></td>
</tr>
</tbody>
</table>

In millions of dollars
Obesity-Related Health Care Costs in Utah

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,122,000,000</td>
<td>$5,843,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>164,385</td>
<td>27,327</td>
<td>$718,000,000</td>
<td>50,992</td>
<td>$2,289,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>29,834</td>
<td>1,747</td>
<td>$47,000,000</td>
<td>2,845</td>
<td>$92,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>113,478</td>
<td>20,030</td>
<td>$1,026,000,000</td>
<td>37,723</td>
<td>$2,530,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>390,890</td>
<td>24,341</td>
<td>$141,000,000</td>
<td>40,202</td>
<td>$393,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>410,666</td>
<td>13,382</td>
<td>$190,000,000</td>
<td>23,918</td>
<td>$541,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Utah

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0%</td>
<td>24.4%</td>
<td>46.4%</td>
<td>40.6%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in The Lancet in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 F as in Fat report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the Community Guide for Preventive Services, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Vermont:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $450 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in Vermont over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Vermont could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Vermont could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Vermont, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Vermont

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$487,000,000</td>
<td>$1,376,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>50,472</td>
<td>8,000</td>
<td>$160,000,000</td>
<td>16,193</td>
<td>$526,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>10,273</td>
<td>614</td>
<td>$9,000,000</td>
<td>1,222</td>
<td>$12,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>38,031</td>
<td>6,978</td>
<td>$243,000,000</td>
<td>14,702</td>
<td>$618,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>128,688</td>
<td>7,605</td>
<td>$34,000,000</td>
<td>13,976</td>
<td>$95,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>127,660</td>
<td>4,228</td>
<td>$44,000,000</td>
<td>8,062</td>
<td>$129,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Vermont

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4%</td>
<td>25.4%</td>
<td>47.7%</td>
<td>42.1%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. 362 The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million; and
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Virginia:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $6 Billion in 10 Years and $18 Billion in 20 Years

The number of obese adults has grown dramatically in Virginia over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Virginia could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Virginia could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMi = \left(\frac{\text{Weight in pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Virginia, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Virginia

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6,266,000,000</td>
<td>$18,114,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>644,975</td>
<td>106,956</td>
<td>$2,122,000,000</td>
<td>209,621</td>
<td>$6,837,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>118,372</td>
<td>5,506</td>
<td>$89,000,000</td>
<td>13,764</td>
<td>$195,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>442,803</td>
<td>86,796</td>
<td>$3,041,000,000</td>
<td>183,631</td>
<td>$8,114,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,512,608</td>
<td>96,997</td>
<td>$434,000,000</td>
<td>175,777</td>
<td>$1,219,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,519,490</td>
<td>51,899</td>
<td>$579,000,000</td>
<td>104,689</td>
<td>$1,750,000,000</td>
</tr>
</tbody>
</table>

*2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Virginia

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2%</td>
<td>29.2%</td>
<td>49.7%</td>
<td>44.7%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 o Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 o For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 o Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 o Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Washington:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $5 Billion in 10 Years and $14 Billion in 20 Years

The number of obese adults has grown dramatically in Washington over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Washington could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Washington could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
\text{BMI} = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Washington, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Washington

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5,201,000,000</td>
<td>$14,729,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>550,296</td>
<td>90,361</td>
<td>$1,680,000,000</td>
<td>178,401</td>
<td>$5,534,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>99,240</td>
<td>5,669</td>
<td>$107,000,000</td>
<td>11,748</td>
<td>$239,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>378,316</td>
<td>74,379</td>
<td>$2,575,000,000</td>
<td>151,285</td>
<td>$6,592,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,282,066</td>
<td>83,258</td>
<td>$358,000,000</td>
<td>145,002</td>
<td>$987,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,294,975</td>
<td>43,507</td>
<td>$477,000,000</td>
<td>82,370</td>
<td>$1,371,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Washington

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9%</td>
<td>26.5%</td>
<td>55.5%</td>
<td>49.1%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/− 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/− 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/− 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/− 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/− 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in West Virginia:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $1 Billion in 10 Years and $3 Billion in 20 Years

The number of obese adults has grown dramatically in West Virginia over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, West Virginia could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if West Virginia could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.385

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in West Virginia, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in West Virginia

<table>
<thead>
<tr>
<th></th>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,346,000,000</td>
<td>$3,638,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>191,529</td>
<td>29,964</td>
<td>$430,000,000</td>
<td>59,669</td>
<td>$1,391,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>33,990</td>
<td>2,375</td>
<td>$33,000,000</td>
<td>4,379</td>
<td>$57,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>137,761</td>
<td>26,420</td>
<td>$685,000,000</td>
<td>53,768</td>
<td>$1,658,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>433,914</td>
<td>25,474</td>
<td>$86,000,000</td>
<td>42,840</td>
<td>$220,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>418,737</td>
<td>13,099</td>
<td>$111,000,000</td>
<td>25,307</td>
<td>$308,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in West Virginia

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.7%</td>
<td>32.4%</td>
<td>60.2%</td>
<td>53.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- $45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Wisconsin:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $4 Billion in 10 Years and $11 Billion in 20 Years

The number of obese adults has grown dramatically in Wisconsin over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Wisconsin could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Wisconsin could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

Projections for Annual Obesity-Related Health Spending in Wisconsin, 2010-2030

In millions of dollars
Obesity-Related Health Care Costs in Wisconsin

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,148,000,000</td>
<td>$11,962,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th></th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>470,136</td>
<td>74,310</td>
<td>$1,442,000,000</td>
<td>147,935</td>
<td>$4,733,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>89,046</td>
<td>4,341</td>
<td>$75,000,000</td>
<td>7,882</td>
<td>$187,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>347,847</td>
<td>59,574</td>
<td>$1,968,000,000</td>
<td>123,717</td>
<td>$5,171,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,130,359</td>
<td>65,742</td>
<td>$286,000,000</td>
<td>114,692</td>
<td>$777,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1,124,133</td>
<td>34,499</td>
<td>$377,000,000</td>
<td>66,542</td>
<td>$1,091,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings
* National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.
^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Wisconsin

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4%</td>
<td>27.7%</td>
<td>56.3%</td>
<td>49.4%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in The Lancet. The full methodology is available in Appendix C of the 2012 F as in Fat report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed *national* projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/− 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/− 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/− 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/− 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the *state-by-state* analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
• *The Compendium of Proven Community-Based Prevention Programs* by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

• In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

 - Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
 - For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
 - Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
 - Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.
Bending the Obesity Cost Curve in Wyoming:

Reducing the Average Body Mass Index in the State by 5 Percent Could Lead to Health Care Savings of More than $350 Million in 10 Years and $1 Billion in 20 Years

The number of obese adults has grown dramatically in Wyoming over the past 15 years, and is expected to grow significantly in the next 20 years.

However, by using evidence-based strategies to improve nutrition and increase physical activity in our schools, neighborhoods and work places, Wyoming could significantly reduce obesity-related diseases and health spending.

A new analysis commissioned by the Trust for America’s Health (TFAH) and the Robert Wood Johnson Foundation (RWJF) and conducted by the National Heart Forum (NHF) found that if Wyoming could reduce the average body mass index (BMI) of its residents by only 5 percent, the state could help prevent thousands of cases of type 2 diabetes, coronary heart disease and stroke, hypertension, cancer and arthritis, while saving millions of dollars. For a six-foot-tall person weighing 200 pounds, a 5 percent reduction in BMI would be the equivalent of losing roughly 10 pounds.

Body mass index (BMI) is a calculation based on an individual’s weight and height:

\[
BMI = \left(\frac{\text{Weight in pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

Obesity is defined as an excessively high amount of fatty tissue in relation to lean tissue. An adult is considered to be obese if his or her BMI is 30 or above.

<table>
<thead>
<tr>
<th>Projections for Annual Obesity-Related Health Spending in Wyoming, 2010-2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>$900</td>
</tr>
</tbody>
</table>

*In millions of dollars
Obesity-Related Health Care Costs in Wyoming

<table>
<thead>
<tr>
<th>Potential Savings by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Savings by 2030 if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$389,000,000</td>
<td>$1,088,000,000</td>
</tr>
</tbody>
</table>

Potential Health and Cost Savings by Top Obesity-Related Health Problems

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>2010 Number of Cases</th>
<th>Potential Cases Avoided by 2020 if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2020, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cases Avoided by 2030, if BMI is Reduced by 5% (cumulative)</th>
<th>Potential Cost Savings by 2030, if BMI is Reduced by 5% (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48,566</td>
<td>7,750</td>
<td>$127,000,000</td>
<td>15,596</td>
<td>$421,000,000</td>
</tr>
<tr>
<td>Obesity-Related Cancers*</td>
<td>9,068</td>
<td>574</td>
<td>$11,000,000</td>
<td>1,068</td>
<td>$21,000,000</td>
</tr>
<tr>
<td>Coronary Heart Disease & Stroke</td>
<td>35,021</td>
<td>6,619</td>
<td>$189,000,000</td>
<td>13,403</td>
<td>$474,000,000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>118,620</td>
<td>7,085</td>
<td>$23,000,000</td>
<td>12,119</td>
<td>$68,000,000</td>
</tr>
<tr>
<td>Arthritis</td>
<td>116,541</td>
<td>3,744</td>
<td>$37,000,000</td>
<td>6,858</td>
<td>$100,000,000</td>
</tr>
</tbody>
</table>

2010 baseline for potential cases, costs and savings

*National Heart Forum provided the total cases and cases avoided per 100,000 people, and TFAH used the state’s 2011 census data to translate to the full population-based estimates.

^Top obesity-related cancers include endometrial (uterine), esophageal, kidney, colon and post-menopausal breast cancer.

Adult Obesity Rates in Wyoming

<table>
<thead>
<tr>
<th>Obesity Rate in 1995</th>
<th>Obesity Rate in 2011</th>
<th>Projected Obesity Rate in 2030 based on current trajectory*</th>
<th>Projected Obesity Rate in 2030 if BMI Decreased by 5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0%</td>
<td>25.0%</td>
<td>56.6%</td>
<td>50.5%</td>
</tr>
</tbody>
</table>

*All ages, all genders, NHF adjusted for self-reporting bias.

Peer-Reviewed Projections of Future Trends

The analysis is based on a model developed by researchers at the National Heart Forum (NHF). Micro Health Simulations used the model in a peer-reviewed study, “Health and Economic Burden of the Projected Obesity Trends in the USA and UK,” published in 2011 in *The Lancet*. The full methodology is available in Appendix C of the 2012 *F as in Fat* report (available at...
All models have limitations in forecasting the future, but they help predict the trajectory of trends based on past data. Trends can, of course, change significantly over time for a variety of reasons. However, having a sense of potential scenarios is particularly helpful to understanding patterns, such as potential growth rates for diseases and costs projections, which can inform policy priorities and decisions.

The NHF study published in *The Lancet* in 2011 developed national projections for adult obesity in the United States and the potential growth in related disease rates and costs between 2010 and 2030, using data from the National Health and Nutrition Examination Survey (NHANES).

The NHF study found the number of obese Americans could grow from 32 percent now to around 50 percent (+/- 5 percent) in 2030.

Based on the predicted rise in obesity, researchers found the baseline potential growth in related costs could be $66 billion (+/- 45 billion). Within the potential range, it could be as low as $21 billion or as high as $111 billion.

In addition, due to expected increases in obesity, the projected baseline estimates for:

- The number of new cases of diabetes could be 7.9 million (+/- 1.6 million) per year, which means it could be as low as 6.3 million or as high as 9.5 million;
- The number of new cases of chronic heart disease and stroke could be 6.8 million (+/- 1.5 million) per year, which means it could be as low as 5.3 million or as high as 8.3 million; and
- The number of new cases of cancer could be 500,000 (+/- 0.1 million) per year, which means it could be as low as 400,000 or as high as 600,000.

The projections in the state-by-state analysis featured in the 2012 *F as in Fat* report are considered to be marginally more accurate than those reported in the national study, because the state-by-state study is based on data from the Behavioral Risk Factor Surveillance System (BRFSS) instead of NHANES. BRFSS provides more data points than NHANES (10 versus seven), which enables researchers to estimate projections more precisely.

Effective Ways to Reduce Obesity

According to the U.S. Centers for Disease Control and Prevention (CDC), more than half of all Americans live with a preventable chronic disease, and many such diseases are related to obesity, poor nutrition and physical inactivity.

A wide range of studies have found that effective disease-prevention programs in communities can improve nutrition, increase physical activity and reduce obesity rates.

- CDC’s Community Preventive Services Taskforce conducts a systematic review and evaluation process to determine effective programs and policies for improving health and preventing disease. The results, published in the *Community Guide for Preventive Services*, feature a series of evidence-based, community approaches to increasing physical activity, promoting good nutrition, lowering diabetes rates and reducing obesity. The approaches include improving the built environment by building sidewalks and increasing access to parks; starting workplace wellness programs; and increasing physical activity in schools.
The Compendium of Proven Community-Based Prevention Programs by The New York Academy of Medicine (NYAM) includes a summary and examples from an extensive literature review that NYAM conducted of peer-reviewed studies evaluating the effectiveness of community-based disease-prevention programs. NYAM identified 84 articles, including programs that can directly reduce obesity and obesity-related diseases.

In 2011, the American Heart Association (AHA) published a review of more than 200 studies and concluded that most cardiovascular disease can be prevented or at least delayed until old age through a combination of direct medical care and community-based prevention programs and policies. Some of the key findings included:

- Every $1 spent on building biking trails and walking paths could save approximately $3 in medical expenses.
- For every $1 spent in wellness programs, companies could save $3.27 in medical costs and $2.73 in absenteeism costs.
- Some interventions have been shown to help improve nutrition and activity habits in just one year and had a return of $1.17 for every $1 spent.
- Participants in community-based programs who focused on improving nutrition and increasing physical activity had a 58 percent reduction in incidence of type 2 diabetes compared with drug therapy, which had a 31 percent reduction.

ENDNOTES

1 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

9 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

11 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

17 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

19 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \times 703 \]

\[\text{BMI} = \frac{200}{(72 \times 72)} \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

\[5\% \text{ of Original BMI} = \text{Original BMI} \times 5\% \]

\[5\% \text{ of Original BMI} = 27.12 \times 0.05 \]

\[5\% \text{ of Original BMI} = 1.36 \]

The individual's BMI after the 5% reduction would be:

\[\text{Reduced BMI} = \text{Original BMI} - 5\% \text{ of Original BMI} \]

\[\text{Reduced BMI} = 27.12 - 1.36 \]

\[\text{Reduced BMI} = 25.76 \]

The individual's weight after reducing his/her BMI to 25.76 would be:

\[\text{Reduced BMI} = \frac{\text{New Weight}}{(\text{Height in Inches} \times \text{Height in Inches})} \times 703 \]

\[25.76 = \frac{\text{New Weight}}{(72 \times 72)} \times 703 \]

\[\text{Reduced Weight} = 189.96 \]

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

\[\text{Pounds lost} = \text{Original Weight} - \text{Reduced Weight} \]

\[\text{Pounds lost} = 200 - 189.96 \]

\[\text{Pounds lost} = 10.04 \text{ pounds} \]

27 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

33 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \times 703 \]

\[\text{BMI} = \frac{200}{(72 \times 72)} \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

\[5\% \text{ of Original BMI} = \text{Original BMI} \times 5\% \]

\[5\% \text{ of Original BMI} = 27.12 \times 0.05 \]

\[5\% \text{ of Original BMI} = 1.36 \]
The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

35 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
40 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

41 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

43 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
48 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

45 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

57 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[
\text{BMI} = \frac{\text{Weight in Pounds}}{\text{Height in inches} \times \text{Height in inches}} \times 703
\]

\[
\text{BMI} = \frac{200}{(72 \times 72)} \times 703
\]

\[
\text{BMI} = 27.12
\]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 * 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = \(\frac{\text{Reduced Weight}}{\text{Height in Inches} \times \text{Height in Inches}} \times 703 \)

25.76 = \(\frac{\text{New Weight}}{(72 \times 72)} \) \times 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

65 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI x 0.05
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

67 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
72 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \times 703 \]

\[\text{BMI} = \frac{200}{(72 \times 72)} \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = \(\frac{\text{Reduced Weight}}{(\text{Height in Inches} \times \text{Height in Inches})} \times 703 \)

25.76 = \(\frac{\text{New Weight}}{(72 \times 72)} \times 703 \)

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

74 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

81 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \times 703 \]

\[\text{BMI} = \frac{200}{(72 \times 72)} \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36
The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

ENDNOTES

83 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

91 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

97 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

99 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

105 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

107 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

ENDNOTES

113 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

1115 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \left(\frac{\text{Weight in Pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703 \]

\[\text{BMI} = \left(\frac{200}{72 \times 72} \right) \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

\[5\% \text{ of Original BMI} = \text{Original BMI} \times 5\% \]

\[5\% \text{ of Original BMI} = 27.12 \times 0.05 \]

\[5\% \text{ of Original BMI} = 1.36 \]

The individual's BMI after the 5% reduction would be:

\[\text{Reduced BMI} = \text{Original BMI} - 5\% \text{ of Original BMI} \]

\[\text{Reduced BMI} = 27.12 - 1.36 \]

\[\text{Reduced BMI} = 25.76 \]

The individual's weight after reducing his/her BMI to 25.76 would be:

\[\text{Reduced BMI} = \left(\frac{\text{New Weight}}{\text{Height in Inches} \times \text{Height in Inches}} \right) \times 703 \]

\[25.76 = \left(\frac{\text{New Weight}}{72 \times 72} \right) \times 703 \]

\[\text{Reduced Weight} = 189.96 \]

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

\[\text{Pounds lost} = \text{Original Weight} - \text{Reduced Weight} \]

\[\text{Pounds lost} = 200 - 189.96 \]

\[\text{Pounds lost} = 10.04 \text{ pounds} \]

123 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

129 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \left(\frac{\text{Weight in Pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703 \]

\[\text{BMI} = \left(\frac{200}{72 \times 72} \right) \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

\[5\% \text{ of Original BMI} = \text{Original BMI} \times 5\% \]

\[5\% \text{ of Original BMI} = 27.12 \times 0.05 \]

\[5\% \text{ of Original BMI} = 1.36 \]
The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

131 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

137 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

139 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
144 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

145 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703

BMI = (200/(72 x 72)) x 703

BMI = 27.12

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703

25.76 = (New Weight/(72 x 72)) x 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

161. The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (New Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

163. Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[
\text{BMI} = \left(\frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \right) \times 703
\]

\[
\text{BMI} = \left(\frac{200}{(72 \times 72)} \right) \times 703
\]

\[
\text{BMI} = 27.12
\]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703

25.76 = (New Weight/(72 x 72)) x 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

170 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

179 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
184 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

185 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
25.76 = 189.96
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

187 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
192 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

193 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703

BMI = (200/(72 x 72)) x 703

BMI = 27.12

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703

25.76 = (New Weight/(72 x 72)) x 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

ENDNOTES

209. The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

211. Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \frac{\text{Weight in Pounds}}{\text{Height in inches} \times \text{Height in inches}} \times 703 \]

\[\text{BMI} = \frac{200}{(72 \times 72)} \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI \times 5%

5% of Original BMI = 27.12 \times 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = \frac{\text{New Weight}}{\text{Height in Inches} \times \text{Height in Inches}} \times 703

25.76 = \frac{\text{New Weight}}{(72 \times 72)} \times 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = \text{Original Weight} – \text{Reduced Weight}

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

219 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

ENDNOTES

227 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

235 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

240 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

241 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

249 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703

BMI = (200/(72 x 72)) x 703

BMI = 27.12

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703

25.76 = (New Weight/(72 x 72)) x 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \left(\frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \right) \times 703 \]

\[\text{BMI} = \left(\frac{200}{(72 \times 72)} \right) \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI \times 5%

5% of Original BMI = 27.12 \times 0.05

5% of Original BMI = 1.36

The individual's BMI after the 5% reduction would be:

Reduced BMI = Original BMI - 5% of Original BMI

Reduced BMI = 27.12 - 1.36

Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = \left(\frac{\text{Reduced Weight}}{(\text{Height in Inches} \times \text{Height in Inches})} \right) \times 703

25.76 = \left(\frac{\text{New Weight}}{(72 \times 72)} \right) \times 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight - Reduced Weight

Pounds lost = 200 - 189.96

Pounds lost = 10.04 pounds

266 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

271 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

273 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \left(\frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \right) \times 703 \]

\[\text{BMI} = \left(\frac{200}{(72 \times 72)} \right) \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI \times 5%

5% of Original BMI = 27.12 \times 0.05

5% of Original BMI = 1.36
The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

ENDNOTES

275 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

283 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

288 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

289 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[
\text{BMI} = \left(\frac{\text{Weight in Pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703
\]

\[
\text{BMI} = \frac{200}{(72 \times 72)} \times 703
\]

\[
\text{BMI} = 27.12
\]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%

5% of Original BMI = 27.12 x 0.05

5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI

Reduced BMI = 27.12 – 1.36

Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

Reduced BMI = \(\frac{\text{Reduced Weight}}{\text{Height in Inches} \times \text{Height in Inches}} \) \times 703

25.76 = \(\frac{\text{New Weight}}{72 \times 72} \) \times 703

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

Pounds lost = Original Weight – Reduced Weight

Pounds lost = 200 – 189.96

Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

314 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES
The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

323 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

329 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual's BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual's weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

331 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

337 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

ENDNOTES

353 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \left(\frac{\text{Weight in Pounds}}{(\text{Height in inches} \times \text{Height in inches})} \right) \times 703 \]

\[\text{BMI} = \left(\frac{200}{(72 \times 72)} \right) \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

\[5\% \text{ of Original BMI} = \text{Original BMI} \times 0.05 \]

\[5\% \text{ of Original BMI} = 27.12 \times 0.05 \]

\[5\% \text{ of Original BMI} = 1.36 \]

The individual’s BMI after the 5% reduction would be:

\[\text{Reduced BMI} = \text{Original BMI} - 5\% \text{ of Original BMI} \]

\[\text{Reduced BMI} = 27.12 - 1.36 \]

\[\text{Reduced BMI} = 25.76 \]

The individual’s weight after reducing his/her BMI to 25.76 would be:

\[\text{Reduced BMI} = \left(\frac{\text{New Weight}}{(\text{Height in Inches} \times \text{Height in Inches})} \right) \times 703 \]

\[25.76 = \left(\frac{\text{New Weight}}{72 \times 72} \right) \times 703 \]

\[\text{Reduced Weight} = 189.96 \]

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

\[\text{Pounds lost} = \text{Original Weight} - \text{Reduced Weight} \]

\[\text{Pounds lost} = 200 - 189.96 \]

\[\text{Pounds lost} = 10.04 \text{ pounds} \]

355 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES
The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

361 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

363 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

369 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36
The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

ENDNOTES

371 Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

377 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

379 Note: Hypertension and arthritis were not included in *The Lancet* study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.
384 Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” *Heartwire* July 26, 2011.

ENDNOTES

385 The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

Busko M. “As treatment costs soar, AHA preaches prevention as savvy investment.” Heartwire July 26, 2011.

ENDNOTES

The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:
BMI = (Weight in Pounds / (Height in inches x Height in inches)) x 703
BMI = (200/(72 x 72)) x 703
BMI = 27.12

A 5% reduction in BMI for this individual would be:
5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 x 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:
Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:
Reduced BMI = (Reduced Weight/(Height in Inches x Height in Inches)) x 703
25.76 = (New Weight/(72 x 72)) x 703
Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:
Pounds lost = Original Weight – Reduced Weight
Pounds lost = 200 – 189.96
Pounds lost = 10.04 pounds

Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

ENDNOTES

401. The BMI of a 6-foot (72-inch) tall, 200-pound person is calculated as follows:

\[\text{BMI} = \left(\frac{\text{Weight in Pounds}}{\text{Height in inches} \times \text{Height in inches}} \right) \times 703 \]

\[\text{BMI} = \frac{200}{72 \times 72} \times 703 \]

\[\text{BMI} = 27.12 \]

A 5% reduction in BMI for this individual would be:

5% of Original BMI = Original BMI * 5%
5% of Original BMI = 27.12 * 0.05
5% of Original BMI = 1.36

The individual’s BMI after the 5% reduction would be:

Reduced BMI = Original BMI – 5% of Original BMI
Reduced BMI = 27.12 – 1.36
Reduced BMI = 25.76

The individual’s weight after reducing his/her BMI to 25.76 would be:

\[\text{Reduced BMI} = \left(\frac{\text{Reduced Weight}}{\text{Height in Inches} \times \text{Height in Inches}} \right) \times 703 \]

\[25.76 = \left(\frac{\text{New Weight}}{72 \times 72} \right) \times 703 \]

Reduced Weight = 189.96

The number of pounds the individual lost by reducing his/her BMI by 5% would be:

\[\text{Pounds lost} = \text{Original Weight} – \text{Reduced Weight} \]

\[\text{Pounds lost} = 200 – 189.96 \]

\[\text{Pounds lost} = 10.04 \text{ pounds} \]

403. Note: Hypertension and arthritis were not included in The Lancet study, but were included in the state-by-state analysis. Potential new cases of hypertension and arthritis were calculated using the same process as used for diabetes, chronic heart disease and stroke and cancer.

